| | | | ON PLAN FOR : | GOVT.MILLENNIUM POLYTECHNIC CHAMBA BASIC OF MECHANICAL ENGINEERING | | | | | | | |-------|---|------|---------------|--|---------|--|--|--|--|--| | S.NO. | (SESSION: AUGUST-DEC. 2025) NO. MONTH WEEK DATE | | | | | | | | | | | _ | | WEEK | DATE | CONTENT (THEORY) | | | | | | | | 1 | AUGUST | 1st | 5,7 | UNIT-1: | REMARKS | | | | | | | | | 2nd | 11,12,14 | Introduction to Thermodynamics - Role of Thermodynamics in Engineering and science, Types of Systems, | | | | | | | | | | 3rd | 18,19,21,23 | Thermodynamic Equilibrium, Properties, State, Process and Cycle, Elementary introduction to Zeroth, First and Second laws of thermodynamics, Heat and Work Interactions for various processes; Concept of Heat Engine, Heat Pump & Refrigerator, Efficiency/COP; Kelvin-Planck and Clausius Statements, Carnot Cycle, Carnot Efficiency, T-S and P-V Diagrams, Concept of Entropy | | | | | | | | | | - | | | | | | | | | | | - | 4th | 25,26,28,30 | | | | | | | | | 2 | SEPT. | 1st | 1,2,4,6 | Unit-II: | | | | | | | | | | 2nd | 8,9,11 | Heat transfer & Thermal Power Plant: Heat Transfer, Modes of Heat Transfer; Conduction: Fourier Equation, Conduction heat transfer through Composite Walls, Simple Numerical Problems, Convection Heat transfer: : Natural and forced convection Radiation Absorbtion By 10 to | | | | | | | | | | 3rd | 15,16,18,20 | | | | | | | | | | | 4th | 21,23,25,27 | transfer: : Natural and forced convection, Radiation: Absorption, Reflection and transmission of radiation, Concept of black body, Stefan-Boltzman Law (concept only Natural | | | | | | | | | | 5th | 29,30 | Concept of black body, Stefan-Boltzman Law (concept only , No derivation), Thermal Power Plant Layout; Rankine Cycle; Fire Tube and Water Tube boilers, Babcock& Wilcox, Cochran Boilers | | | | | | | | 3 | ост. | 1st | 4 | Unit-III: | | | | | | | | | | 2nd | 6,9 | Steam Turbines: Impulse and Reaction Turbines: God I | | | | | | | | | | 3rd | 13,14,16,18 | Internal Combustion Engines: Otto, Diesel and Dual cycles; P-V and T-S Diagrams; IC Engines: 2-Stroke and 4-Stroke I.C. Engines, S.I. and C.I. Engines. | | | | | | | | | 1 | 4th | 21,23,25 | 4-Stroke I.C. Engines, S.I. and C.I. Engines. | | | | | | | | | | 5th | 27,28,30 | | | | | | | | | 4 | NOV. | 1st | 1 | Unit-IV: | | | | | | | | | | 2nd | 3,4,6 | Materials and Manufacturing Processes (derivations and Problems omitted): Engineering Materials, | | | | | | | | | | 3rd | 10,11,13,15 | Classification and their Properties; Metal Casting, Moulding, Patterns, Metal Working: Hot Working and Cold Working, Metal Forming: Extrusion, Forging, Bolling, Proving, Co. Working, Metal Working and Cold | | | | | | | | | | 4th | 17,18,20,22 | Brazing. Unit-V: Machine Tools and Machining Processes: Machine Tools and | | | | | | | | | | | A AVE. | | | | | | | | | | | 5th | 24,25 | Mechanism , Drilling Machine: Operations, Grinding Machine: Operations. | | | | | | | Mithun Thakur (Lect. Mech. Engg.) HOD/OIC | | LESSON | PLAN FOR : MA | NUFACTURING ENGI | | | |-------|--------|---------------|------------------|--|---------| | | | | | MECHATRONICS FLOURIST (SESSION: AUGUST-DEC. 2025) | | | S.NO. | MONTH | WEEK | DATE | MECHATRONICS ENGINEERING (SEMESTER - 3RD) | | | 1 | AUGUST | 1st | 6,6,7,8 | UNIT-I: Cutting Fluids Co. 1. C. CONTENT (THEORY) | | | | | 2nd | | UNIT-I: Cutting Fluids & Lubricants: Introduction; Types of cutting fluids, Fluids and coolants required in turning, drilling, shaping, sawing & broaching; Selection of cutting fluids, probleds of the coolants required in turning, | REMARKS | | | 1 | | 13,13,14 | Classification of Jubricants solid liquid | | | | 1 | 3rd | 20,20,21,22 | Lathe Operations: Types of Jathos - light at last and applications of lubricants. | | | | | 4th | 27,27,28,29 | only); Specifications; Basic parts and their functions; Operations and tools–Turning, parting off, Knurling, facing, Boring, drilling, threading, step turning, taper turning. | | | 2 | SEPT. | 1st | 3,3,4,5 | , toper turning. | | | | | 2nd | 10,10,11,12 | Unit-II:Broaching Machines: Introduction to broaching; Types of broaching machines—Horizontal type (Single ram | | | | vil. | 3rd | 17,17,18,19 | materials for broaching | | | | 12 | 4th | 24,24,25,26 | Drilling: Classification; Basic parts and their functions; Radial drilling machine; Types of operations; Specifications of drilling machine; Types of drills and reamers. | | | 3 | ост. | 1st | 1,1,3 | and realities. | | | | | 2nd | | Unit-III:Welding: Classification; Gas welding techniques; Types of welding flames; Arc Welding – Principle, Equipment, Applications; Shielded metal arcwelding: Submerced account in the control of c | | | | | | 8,8,9,10 | Equipment, Applications; Shielded metal arcwelding; Types of welding flames; Arc Welding —Principle, welding - Spot welding, Seam welding, Projection welding: Welding documents of the Welding of the Spot welding, Resistance | -4.1.2 | | | | 3rd | 15,15 | Milling: Introduction: Types of millian and soldering | | | | | 4th | 22,22,23,24 | Unit-IV:Gear Making: Manufacture of | | | | | 5th | 29,29,30,31 | Unit-IV:Gear Making: Manufacture of gears—by Casting, Moulding, Stamping, Coining, Extruding, Rolling, Machining; Gear generating methods: Gear Shaping with pinion cutter & rack cutter; Gear hobbing; Description of gear hob; Operation of gear hobbing machine; Gear finishing processes; | | | 4 | NOV. | 1st | 6,7 | Gear materials and specification; Heat treatment processes applied to gears. Press working (derivations and problems omitted): Types of presses and Specifications, Press working operations-Cutting, bending, drawing, punching, blanking, porthing, leaving, leaving | | | | | 2nd | 12,12,13,14 | blanking and piercing, effect of clearance. Unit-V: Grinding and Finishing processes: Principles of metal removal by Grinding Abratives. Nature 18 Bonds and hinding processes: Principles of metal removal by Grinding. | | | | | 3rd | 19,19,20,21 | grind wheels: size and shape of wheel, kind of abrasive, grain size, grade and strength of bond, structure of grain, spacing, kinds of bind material; Grinding machines; Construction of grinding machines; Construction details; Principle of centerless grinding; Advantages & limitations of centerless grinding; Finishing by grinding; Honing, Lapping, Super finishing; | | | | | 4th | 26,26 | Electroplating: Basic principles, Plating metals, applications; Hot dipping: Galvanizing, Tin coating, Parkerising, Anodizing; Metal spraying: wire process, powder process and applications; Organic coatings:;Finishing specifications. | | Mithum thatur (Lect. Mech. Engg.) HOD/OIC # Government Millennium Polytechnic Chamba Distt Chamba (H.P) -176310 Department of Mechatronics #### Lesson Plan Subject: Digital Electronics Semester- 3rd Session: (Aug - Dec, 2025) **Total Planned Periods: 56** **Start From**: 01/08/2025 | Sr.
No | Month | We
ek | Title and Title | Contents | Remarks | |-----------|-----------|-----------------|-------------------------------------|---|---------------------------------------| | 1 | | 1 st | Number
Systems & | Introduction to different number systems Conversion from one number system to another | | | 2 | August | 2 nd | Boolean
Algebra | Boolean variables – Rules Laws of Boolean algebra De-Morgan's Theorem | | | 3 | | 3 rd | | Karnaugh Maps Their use for simplification of
Boolean expressions | | | 4 | | 4 th | | AND, OR, NOT, NAND, NOR,
XOR, XNOR: Symbolic
representation and truth table | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 4 | | 1 st | Logic Gates | Implementation of Boolean expressions Logic Functions using gates Simplification of expressions | | | | September | 2 nd | Combinatio
nal Logic
Circuits | Arithmetic Circuits – Addition,
Subtraction 1's &2's Complement
Half Adder, Full Adder | | | 8 | | 3 rd | 1 | Half Subtractor, Full SubtractorParallel and Series Adders | Class Test-1 | | 9 | | 4 th | | Encoder, Decoder Multiplexer – 2 to 1 MUX, 4 to 1 MUX, 8 to 1 MUX and their Applications | | | Sr.
No | | We
ek | Chapter | Contents | Remarks | |-----------|----------|-----------------|-------------------|---|--------------| | 1 | | 1 st | Sequential | Demultiplexer – 1-2 DEMUX, 1-4
DEMUX, 1- 8 DEMUX Flip Flops – SR, JK, T, D | | | 2 | October | 2 nd | Logic
Circuits | JK-MS, Triggering Counters – 4bit Up – Down
Counters, Asynchronous/ Ripple
Counter | | | 3 | | 3 rd | | Decade Counter- Mod 3, Mod 7 Counter, Johnson Counter, Ring Counter | Class Test-2 | | 4 | | 4 th | | Registers – 4bit Shift Register:
Serial In Serial Out, Serial In
Parallel Out, Parallel In Serial
Out, Parallel In Parallel Out | | | 4 | | 1 st | | Classification of Memories –
RAM Organization, Address
Lines and Memory Size, Static
RAM, Bipolar RAM, Cell
Dynamic RAM, D RAM, DDR
RAM | Ving P q | | 40.5 | | 2 nd | Memory
Devices | House Test | | | 8 | November | 3 rd | | Read only memory – ROM
organization, Expanding
memory, PROM, EPROM,
EEPROM, Flash memory | | | 9 | | 4 th | | Data Converters – Digital to
Analog converters, Analog to
Digital Converters | | HOD /OIC Mechatronics Teacher's Signature Discipline : Mechatronics Engg Name of Faculty Semester : Mr. Bhupinder Singh Subject : 3rd : EDC Duration :16 weeks Work load per week (in hours): Lectures—03, DCS (Th)-01, Practical—02, DCS (Pr)-00 | | | Theory | Practical | | | |-------|----------------|--|---------------------------------------|--|--| | Week | Lecture
Day | | Practical day | Topic | | | | 1 | Definition, Extrinsic/Intrinsic , N-type & P-type | | Construct the circuit and plot the VI characteristics of the PN | | | 1st | 2 | PN Junction Diode | 1st | Junction Diode, find the cut in | | | | 3 | Forward and Reverse Bias Characteristics | | voltage | | | | 4 | DCS | 1 | | | | | - 5 | Zener Diode – Principle | | (II) | | | O = d | 6 | Zener Diode – characteristics | 2nd | Revision | | | 2nd | 7 | Zener Diode - construction, working. | 2110 | 11011011 | | | | 8 | DCS | | l _{on} | | | | 9 | Diode Rectifiers – Half Wave | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | On a twent the piravit and plot the | | | 01 | 10 | Diode Rectifiers - Full Wave | 3rd | Construct the circuit and plot the
characteristics of a Zener Diode | | | 3rd | 11 | Filters – C, LC, and PI Filters. | 7 310 | Find the breakdown voltage | | | | 12 | DCS | | Tima and produce and temperature | | | | 13 | NPN Transistor – Operation and characteristics | | Revision | | | 411 | 14 | Same Topic | 7 (| | | | 4th | 15 | PNP Transistor – Operation and characteristics | - 4th | | | | | 16 | DCS | 1 | | | | ¥4, | 17 | Common Base Configuration – characteristics and working | | Construct a Half Wave Rectifice and obtain regulation characteristics – Without Filter | | | 5th | 18 | Same Topic | 5th | | | | · | 19 | Common Emitter Configuration — characteristics and working | | and with Filters Compare the results | | | | 20 | DCS | } | | | | | | Common Collector Configuration – characteristics and working | / | Construct a Full Wave center tag
rectifier and obtain regulation | | | 6th | 22 | Same Topic | 6th | characteristics - Without Filters | | | | 23 | High frequency model of BJT | | and with Filters Compare the | | | | 24 | DCS | | results | | | | 25 | Classification of amplifiers | | | | | 7th | 26 | negative feedback | 7th | Revision | | | , | 27 | FET – Working Principle, Classification |] ''' | revision | | | 9 4 7 | 28 | DCS | | | | | 111 | 29 | MOSFET Small Signal model | | Construct a Bridge Rectifier and | | | 8th | 30 | N-Channel MOSFETs – characteristics | 8th | obtain regulation characteristics - | | | | 31 | P- Channel MOSFETs – characteristics | 1 | Without Filters and with Filters | | | 11/4 | 32 | DCS |] | | | | | 33 | enhancement ,depletion mode, MOS-FET | | | | | 9th | 34 | MOS-FET as a Switch | 1 | Obtain the characteristics of DIA | | | Jui | 35 | Common Source Amplifiers | 9th | and TRIAC | | | | 36 | DCS | 1 | | | | | A STATE OF | | | | | |------------------------------|------------|--|------|--|--| | | | Uni-Junction Transistor – equivalent circuit and | | 1000 | | | | 37 | operation. | | 100 | | | 10th | 38 | Same Topic | 10th | Revision | | | | 39 | SCR – Construction, operation | | 4 | | | - x | 40 | DCS | | 1 | | | | 41 | SCR – working, characteristics | | Simulate helf | | | 11th | 42 | Same Topic | 11th | Simulate half wave, full wave and bridge rectifier using simulation | | | | 43 | DIAC - Construction, operation | | tool like PSpice/ ORCAD/Multisim | | | | 44 | DCS | | The state of s | | | | 45 | DIAC - working, characteristics | 12th | 7 | | | 12th | 46 | Same Topic | | Revision | | | 10th 11th 12th 13th 15th | 47 | TRIAC - Construction, operation | | | | | | 48 | DCS | | | | | | 49 | TRIAC -working, characteristics | 13th | 100 | | | 400 | 50 | SCR and MOSFET as a Switch, DIAC as bidirectional switch | | Develop a simulation model for | | | 13tn | | | | Voltage Series and Voltage Shunt | | | | 51 | Comparison of SCR, DIAC, TRIAC, MOSFET | | Feedback Amplifiers | | | | 52 | DCS | 1 | | | | | 53 | Feedback Amplifiers – Properties of negative Feedback | 1 | Develop a simulation model for | | | 14th | 54 | Same Topic | 14th | Current Series and Current Shun | | | 11th 12th 13th | 55 | impact of feedback on different parameters | | Feedback Amplifiers | | | , F = 1 | 56 | DCS | þ | | | | | 57 | Basic Feedback Amplifier Topologies | | Develop circuits for Current Serie | | | 15th | 58 | Voltage Series, Voltage Shunt | | and Current Shunt Feedback | | | 1501 | 59 | DCS | 15th | Amplifiers and obtain output plots | | | | 60 | Current Series, Current Shunt | | Compare the results with the | | | | 61 | Same Topic |) | simulation model | | | 16th | 62 | Oscillator – Basic Principles , Crystal Oscillator | | | | | 1011 | 63 | Non-linear/ Pulse Oscillator | 16th | Revision | | | | 64 | DCS | | | | | | | | | | | Faculty Signature # Government Millennium Polytechnic Chamba Distt Chamba (H.P) -176310 ## **Department of Mechatronics** ### Lesson Plan Subject: Electric Circuits and Network Semester- 3rd Session: (Aug – Dec, 2025) **Total Planned Periods: 56** Start From: 01/08/2025 | Sr.
No | Month | Week | Chapter | Contents | Remarks | | |-----------|-----------|-----------------|--|--|--|--| | 1 | | 1 st | Basics of | Nodal and Mesh analysis Superposition Theorem Thevenin Theorem | | | | 2 | August | 2 nd | Network and
Network
Theorem | | Norton Theorem Maximum Power transfer Theorem | | | 3 | | 3 rd | | Reciprocity TheoremRevision | | | | 4 | THE | 1 st | Graph Theory | Concept of Graph Node Tree of Network Incidence matrix | W. | | | 5 | | 2 nd | | Analysis of network using cut-set and tie set Duality Theorem | 1.7 | | | 6 | September | 3 rd | | Application of duality theoremNumericals | Class Test - I | | | 7 | | 4 th | | Revision of 1 st and 2 nd Chapter | • | | | 8 | | 1 5t | Time Domain
and Frequency
Domain | Solution of first and second order
differential equations for series circuits Solution of first and second order
differential equations for parallel circuits | | | | 9 | | 2 nd | Analysis | Initial and final conditions in network elements Forced and free responses time | | | | | October | | | constants Steady state and transient state response | | | | | | | | Analysis of electrical circuits using
Laplace Transform for standard inputs
(Ramp, unit, step) | | |------|----------|-----------------|-------------------------------------|--|-----------------| | 10 | | 3 rd | Trigonometric
and
exponential | Discrete spectra and symmetry of waveform Steady state response of a network to non-sinusoidal periodic inputs | Class Test- II | | 11 | | 4 th | Fourier series | Revision | Diwali Vacation | | 12 | November | 1 st | | Power factor Fourier transform and continuous
spectra | | | 13 | | 2 nd | Two Port
Network | House Test | | | . 14 | | 3 rd | | Introduction of the two port network
and the various network parameters Short circuit admittance parameters | | | 15 | | 4 th | , | Transmission parametersHybrid ParametersRevision | | HOD /OIC Mechatronics Teacher's Signature